第四章 活性污泥法

§4.1 基本概念

一、概述

活性污泥由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。

活性污泥的性质:黄褐色;土腥味;似矾花絮绒颗粒;相对密度:曝气池混合液:1.0021.003,回流污泥:1.0041.006;粒经:0.020.2mm;比表面积:20100cm2/mL;干固体和水分:含水98~99%,干固体1~2%

活性污泥的组成:按栖息着的微生物分:大量的细菌,真菌,原生动物,后生动物,除活性微生物外,活性污泥还挟带着来自污水的有机物、无机悬浮物、胶体物;活性污泥中栖息的微生物以好氧微生物为主,是一个以细菌为主体的群体,除细菌外,还有酵母菌、放线菌、霉菌以及原生动物和后生动物。活性污泥中细菌含量一般在107108/mL;原生动物103/mL,原生动物中以纤毛虫居多数,固着型纤毛虫可作为指示生物,固着型纤毛虫如钟虫、等枝虫、盖纤虫、独缩虫、聚缩虫等出现且数量较多时,说明培养成熟且活性良好。

MLSS=Ma+Me+Mi+Mii

式中:Ma——具备活性细胞成分;

Me——内源代谢残留的微生物有机体;

Mi——未代谢的不可生化的有机悬浮固体;

Mii——吸附的无机悬浮固体。

按有机性和无机性成分:MLSS表示悬浮固体物质总量,MLVSS挥发性固体成分表示有机物含量,MLNVSS:灼烧残量,表示无机物含量。MLVSS包含了微生物量,但不仅是微生物的量,由于测定方便,目前还是近似用于表示微生物的量。处理生活污水的活性污泥:MLVSS: 70%NVSS: 30%MLVSS: 一般范围为55~75NVSS: 一般范围为25~45%。

活性污泥的沉降浓缩性能:

污泥沉降比:SV:取混合液至1000mL100mL量筒,静止沉淀30min后,度量沉淀活性污泥的体积,以占混合液体积的比例(%)表示污泥沉降比。

污泥体积指数:SVISV不能确切表示污泥沉降性能,故人们想起用单位干泥形成湿泥时的体积来表示污泥沉降性能,简称污泥指数,单位为mL/g

活性污泥降解污水中有机物的过程

二、活性污泥法的基本流程

三、活性污泥降解污水中有机物的过程

活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段:

吸附阶段:由于活性污泥具有巨大的表面积,而表面上含有多糖类的黏性物质,导致污水中的有机物转移到活性污泥上去。

稳定阶段:主要是转移到活性污泥上的有机物为微生物所利用。

对活性污泥法曝气过程中污水中有机物的变化分析得到结论:

废水中的有机物:残留在废水中的有机物: 微生物不能利用的有机物, 微生物能利用的有机物;从废水中去除的有机:微生物能利用而尚未利用的有机物,微生物不能利用的有机物, 微生物已利用的有机物(氧化和合成)。

§4.2活性污泥法的发展

一、曝气反应池的基本形式

1、推流式曝气池

2、完全混合曝气池;

3、封闭环流式反应池;

4、序批式反应池

二、活性污泥法的发展和演变

1、渐减曝气:在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。实际情况是:前半段氧远远不够,后半段供氧量超过需要。渐减曝气的目的就是合理地布置扩散器,使布气沿程变化,而总的空气量不变,这样可以提高处理效率。

2、分步曝气:把入流的一部分从池端引入到池的中部分点进水。

3、完全混合法:完全混合的概念:在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,长条形池子中也能做到完全混合状态。

完全混合法的特征:

 1)池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同。

 2)入流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是像推流中仅仅由部分回流污泥来承担。完全混合池从某种意义上来讲,是一个大的缓冲器和均和池,在工业污水的处理中有一定优点。

3)池液里各个部分的需氧量比较均匀。

4、浅层曝气:浅层曝气与一般曝气相比,空气量增大,但风压仅为一般曝气的1/4~1/6左右,约10kPa,故电耗略有下降。浅层池适用于中小型规模的污水厂。由于布气系统进行维修上的困难,没有得到推广利用。

5、深层曝气:一般曝气池直径约1~6m,水深约1020m。深井曝气法深度为50150m,节省了用地面积。在深井中可利用空气作为动力,促使液流循环。深井曝气法中,活性污泥经受压力变化较大,实践表明这时微生物的活性和代谢能力并无异常变化,但合成和能量分配有一定的变化。当井壁腐蚀或受损时,污水可能会通过井壁渗透,污染地下水。

6、高负荷曝气或变形曝气:部分污水厂只需要部分处理,因此产生了高负荷曝气法。曝气池中的MLSS约为300500mg/L,曝气时间比较短,约为23h,处理效率仅约65%左右,有别于传统的活性污泥法,故常称变形曝气。

7、克劳斯法:克劳斯工程师把厌氧消化的上清液加到回流污泥中一起曝气,然后再进入曝气池,克服了高碳水化合物的污泥膨胀问题,这个方法称为克劳斯法。

8、延时曝气:曝气时间很长,达24h甚至更长,MLSS较高,达到30006000mg/L

活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放;适用于污水量很小的场合,近年来,国内小型污水处理系统多有使用。

9、接触稳定法:混合液曝气过程中第一阶段BOD5的下降是由于吸附作用造成的,对于溶解的有机物,吸附作用不大或没有,因此,把这种方法称为接触稳定法,也叫吸附再生法。混合液的曝气完成了吸附作用,回流污泥的曝气完成稳定作用。

接触稳定法直接用于原污水的处理比用于初沉池的出流处理效果好;可省去初沉池;此方法剩余污泥量增加。

10、氧化沟:氧化沟是延时曝气法的一种特殊形式,它的池体狭长,池深较浅,在沟槽中设有表面曝气装置。曝气装置的转动,推动沟内液体迅速流动,具有曝气和搅拌两个作用,沟中混合液流速约为0.30.6m/s,使活性污泥呈悬浮状态。

11、纯氧曝气:纯氧代替空气,可以提高生物处理的速度。在密闭的容器中,溶解氧的饱和度可提高,氧溶解的推动力也随着提高,氧传递速率增加了,因而处理效果好,污泥的沉淀性也好。纯氧曝气并没有改变活性污泥或微生物的性质,但使微生物充分发挥了作用。纯氧曝气的缺点是纯氧发生器容易出现故障,装置复杂,运转管理较麻烦。

12、活性污泥生物滤池(ABF工艺):塔式滤池滤料表面附着很多的活性污泥,因此滤料的材质和构造不同于一般生物滤池。滤池也可以看作采用表面曝气特殊形式的曝气池,塔是一外置的强烈充氧器。因而ABF可以认为是一种复合式活性污泥法。

13、吸附-生物降解工艺(AB法):A级以高负荷或超高负荷运行,B级以低负荷运行,A级曝气池停留时间短,3060minB级停留时间24h。该系统不设初沉池,A级曝气池是一个开放性的生物系统。AB两级各自有独立的污泥回流系统,两级的污泥互不相混。处理效果稳定,具有抗冲击负荷和pH变化的能力。该工艺还可以根据经济实力进行分期建设。

14、序批式活性污泥法(SBR法):SBR工艺的基本运行模式由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌装置的反应器内依次进行的。

SBR工艺与连续流活性污泥工艺相比的优点:(1)工艺系统组成简单,不设二沉池,曝气池兼具二沉池的功能,无污泥回流设备;(2)耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池; (3)反应推动力大,易于得到优于连续流系统的出水水质; (4)运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷的效果;       (5)污泥沉淀性能好,SVI值较低,能有效地防止丝状菌膨胀; (6)该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于自控运行,易于维护管理。

SBR工艺的缺点:(1)容积利用率低;(2)水头损失大;(3)出水不连续;(4)峰值需氧量高;(5)设备利用率低;(6)运行控制复杂;(7)不适用于大水量。

三、污水生物脱氮除磷工艺的发展

随着近代生物学的发展以及人们对生物技术的掌握,污水脱氮除磷技术由以单纯的工艺改革向着以生物学特性研究、促进工艺改革的方向发展,以达到高效低耗。主要表现在以下几个方面:

1)系统中硝化菌与聚磷菌间的矛盾主要在于泥龄。由于快速生物降解COD理论的发展,人们逐渐认识到反硝化菌与聚磷菌间的矛盾主要是由基质竞争引起的,所以有研究者将工作的重点转移到对碳源需求的研究上:一是通过改进工艺将除磷和脱氮在空间和时间上分开,分别设置厌氧、缺氧、好氧环境来满足脱氮和除磷要求;一是寻找快速可替代有机碳源,使反硝化速率加快,脱氮效率提高。目前已有研究者在研究如何采用生物技术将城市污水的初沉污泥这种潜在的碳源高速、高效地转化为快速有机碳源,达到提高污水除磷脱氮效果和废物利用的双重目的。

2)短程污水生物脱氮法由于具有节能、节约外加碳源、缩短水力停留时间和减少剩余污泥排放量等优点受到关注。利用微生物动力学特性的固有差异而实现亚硝酸菌和硝酸菌的动态竞争与选择,尤其是通过降低溶解氧实现短程硝化的控制是对传统生物脱氮处理的深化,但对活性污泥的沉降性能和污泥膨胀、低溶解氧下同步硝化与反硝化等问题,有待于进一步研究与完善。

3)在一般系统中,提高除磷效率往往伴随着脱氮率的下降,因此有研究者设想如果将反硝化与除磷这两个需碳源的过程合二为一,即在缺氧环境下利用亚硝酸盐作为电子受体,同时进行反硝化和超量聚磷,这样可大大减少碳源需求量。已有研究者观察到这种现象,并认为存在反硝化聚磷菌(DNPAO)可同时进行反硝化作用和超量聚磷,但在不同环境条件下,DNPAO的诱导增殖与代谢途径的变化规律等仍有待研究。

污水排放标准的不断严格是目前世界各国的普遍发展趋势,以控制水体富营养化为目的的氮、磷脱除技术开发已成为世界各国主要的奋斗目标。我国对污水脱氮除磷技术的研究起步较晚,投入的资金也十分有限,研究水平仍处于发展阶段。目前在污水脱氮除磷技术基础理论没有重大革新之前,充分利用现有的工艺组合,开发技术成熟、经济高效且符合国情的工艺应是今后我国污水脱氮除磷技术发展的主要方向,主要体现在:

1)开展对生物脱氮除磷更深入的基础研究和应用开发,优化生物脱氮除磷组合工艺,开发高效、经济的小型化、商品化脱氮除磷组合工艺。

2)发展可持续污水处理工艺,朝着节约碳源、降低CO2释放、减少剩余污泥排放以及实现氮磷回收和处理水回用等方向发展。

3)大力开发适合现有污水处理厂改造的高效污水脱氮除磷技术。

常用的污水脱氮除磷技术有:缺氧-好氧脱氮工艺;厌氧-好氧除磷工艺;厌氧-缺氧-好氧生物脱氮除磷工艺等。但是,在常规的生物脱氮除磷工艺中,污泥在厌氧、缺氧和好氧段之间往复循环。该污泥由硝化菌、反硝化菌、除磷菌以及其它多种微生物组成,由于不同菌的最佳生长环境不同,脱氮与除磷之间存在着矛盾。实际应用中经常出现脱氮效果好时除磷效果较差,而除磷效果好时脱氮效果不佳。

因此,常规污水生物脱氮除磷技术流程存在着影响该工艺有效运行的相互影响和制约的因素,主要表现为:①厌氧与缺氧段污泥量的分配比影响磷释放或硝态氮反硝化的效果,厌氧段污泥量比例大则磷释放效果好,但反硝化效果差;反之,则反硝化效果好,而磷释放效果差;②原污水经厌氧段进入缺氧段,磷释放与硝态氮反硝化争夺碳源,当原水中碳源不足时,磷释放或反硝化不完全;③硝化菌世代繁殖时间长,要求较长的污泥龄,但磷从系统中被去除主要是通过剩余污泥的排放,因此要提高除磷效率则要求短污泥龄。对于某些含高浓度氨氮的工业废水,由于碳源不足,总氮的去除率较低。

四、膜生物反应器

-生物反应器(Membrane Bio-Reactor,MBR)为膜分离技术与生物处理技术有机结合之新型态废水处理系统。以膜组件取代传统生物处理技术末端二沉池,在生物反应器中保持高活性污泥浓度,提高生物处理有机负荷,从而减少污水处理设施占地面积,并通过保持低污泥负荷减少剩余污泥量。主要利用膜分离设备截留水中的活性污泥与大分子有机物。膜生物反应器系统内活性污泥(MLSS)浓度可提升至8000~10,000mg/L,甚至更高;污泥龄(SRT)可延长至30天以上。

膜生物反应器因其有效的截留作用,可保留世代周期较长的微生物,可实现对污水深度净化,同时硝化菌在系统内能充分繁殖,其硝化效果明显,对深度除磷脱氮提供可能。污水处理:中国是一个缺水国家,污水处理及回用是开发利用水资源的有效措施。污水回用是将城市污水、工业污水通过膜生物反应器等设备处理之后,将其用于绿化、冲洗、补充观赏水体等非饮用目的,而将清洁水用于饮用等高水质要求的用途。城市污水、工业污水就近可得,可免去长距离输水,而实现就近处理实现水资源的充分利用,同时污水经过就近处理,也可防止污水在长距离输送过程中造成污水渗漏,导致污染地下水源。污水回用已经在世界上许多缺水的地区广泛采用,被认为21世纪污水处理最实用技术。

§4.3 活性污泥法数学模型基础

一、建立模型的假设

(1) 曝气池处于完全混合状态;

(2) 进水中微生物浓度假设为零

(3) 全部可生物降解的底物都处于溶解状态;

(4) 系统处于稳定状态;

(5) 二沉池中没有微生物活动;

(6) 二沉池中没有污泥累积,泥水分离良好。

完全混合活性污泥法系统典型流程

 

剩余污泥排除方式:①排除曝气池混合液②从二沉池底部排泥管排除(普遍采用的方式)

二、劳伦斯麦卡蒂模型

1. 微生物平均停留时间(污泥龄d):反应系统内微生物全部更新一次所需要的时间,即系统内微生物总量与每日排出的剩余污泥量的比值,以θc表示。

2.根据假定条件,对系统进行微生物的物料横算,得出

通过控制污泥龄可以控制微生物的比增长速率及系统中微生物的生理状态。

活性污泥法系统的出水有机物浓度仅是污泥龄和动力学参数的函数,与进水有机物浓度无关。

曝气池中的污泥浓度与进出水水质、泥龄和动力学参数有关。

可根据泥龄、HRT、污泥浓度和进出水水质求出YKd

§4.4 去除有机污染物的活性污泥法过程设计

一、曝气池容积设计计算

1、有机负荷法

2、污泥龄法

二、剩余污泥量计算

1、按污泥泥龄计算

2、根据污泥产率系数或表观产率系数计算

三、需氧量设计计算

1、根据有机物降解需氧率和内源代谢需氧率计算

2、微生物对有机物的氧化分解需氧量

 

§4.5 脱氮除磷活性污泥法工艺

一、生物脱氮工艺

二、生物除磷工艺

三、生物脱氮除磷工艺

AAO法又称A2O法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。该法是20世纪70年代,由美国的一些专家在AAO法脱氮工艺基础上开发的。

单元功能:

1、厌氧反应器,原污水与从沉淀池排出的含磷回流污泥同步进入,本反应器主要功能是释放磷,同时部分有机物进行氨化;

2、缺氧反应器,首要功能是脱氮,硝态氮是通过内循环由好氧反应器送来的,循环的混合液量较大,一般为2QQ为原污水流量);

3、好氧反应器——曝气池,这一反应单元是多功能的,去除BOD,硝化和吸收磷等均在此处进行。流量为2Q的混合液从这里回流到缺氧反应器。

4、沉淀池,功能是泥水分离,污泥一部分回流至厌氧反应器,上清液作为处理水排放。

工艺特点:

1、本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总水力停留时间少于其他类工艺;

2、在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,不易发生污泥丝状膨胀,SVI值一般小于100

3、污泥含磷高,具有较高肥效;

4、运行中勿需投药,两个A段只用轻轻搅拌,以不增加溶解氧为度,运行费用低;

解决问题:

1、除磷效果难再提高,污泥增长有一定限度,不易提高,特别是P/BOD值高时更是如此;

2、脱氮效果也难再进一步提高,内循环量一般以2Q为限,不宜太高;

3、进入沉淀池的处理水要保持一定浓度的溶解氧,减少停留时间,防止产生厌氧状态和污泥释放磷的现象出现,但溶解氧浓度也不宜过高,以防循环混合液对缺氧反应器的干扰。

§4.6 二次沉淀池

 

一、基本原理

次沉淀池的功能要求

1.澄清(固液分离)

2.污泥浓缩(使回流污泥的含水率降低,回流污泥的体积减少)

二沉池的实际工作情况

1)二沉池中普遍存在着四个区:清水区、絮凝区、成层沉降区、压缩区。两个界面:泥水界面和压缩界面。

2)混合液进入二沉池以后,立即被稀释,固体浓度大大降低,形成一个絮凝区。絮凝区上部是清水区,两者之间有一泥水界面。

3)絮凝区后是一个成层沉降区,在此区内,固体浓度基本不变,沉速也基本不变。絮凝区中絮凝情况的优劣,直接影响成层沉降区中泥花的形态、大小和沉速。

4)靠近池底处形成污泥压缩区。

二沉池的澄清能力与混合液进入池后的絮凝情况密切相关,也与二沉池的表面面积有关。二沉池的浓缩能力主要与污泥性质及泥斗的容积有关。对于沉降性能良好的活性污泥,二沉池的泥斗容积可以较小。

二、二次沉淀池的构造和计算

二次沉淀池在构造上要注意以下特点:

1)二次沉淀池的进水部分,应使布水均匀并造成有利于絮凝的条件,使泥花结大。

2)二沉池中污泥絮体较轻,容易被出流水挟走,要限制出流堰处的流速,使单位堰长的出水量不超过10m3/m h)。

3)污泥斗的容积,要考虑污泥浓缩的要求。在二沉池内,活性污泥中的溶解氧只有消耗,没有补充,容易耗尽。缺氧时间过长可能影响活性污泥中微生物的活力,并可能因反硝化而使污泥上浮,故浓缩时间一般不超过2h

§4.7 活性污泥法处理系统的设计、运行与管理

一、水力负荷

流向污水厂的流量变化:一天内的流量变化,随季节的流量变化,雨水造成的流量变化,泵的选择不当造成的流量变化水力负荷的变化影响活性污泥法系统的曝气池和二次沉淀池。当流量增大时,污水在曝气池内的停留时间缩短,影响出水质量,同时影响曝气池的水位。若为机械表面曝气机,由于水面的变化,它的运行就变得不稳定。对二次沉淀池为水力影响。

二、有机负荷率

曝气区容积的计算,设计中要考虑的主要问题是如何确定污泥负荷率NMLSS的设计值。污泥负荷率NMLSS的设计值采用得大一些,曝气池所需的体积可以小一些。但出水水质要降低,而且使剩余污泥量增多,增加了污泥处置的费用和困难,同时,整个处理系统较不耐冲击,造成运行中的困难设计时污泥负荷率一般不大于0.5,如果要求N素转入硝化阶段,一般采用0.3。为避免剩余污泥处置上的困难和保持污水处理系统的稳定可靠,可以采用低的污泥负荷率(<0.1),把曝气池建得很大,这就是延时曝气法。

三、微生物浓度

在设计中采用高的MLSS并不能提高效益,原因如下:其一,污泥量并不就是微生物的活细胞量。曝气池污泥量的增加意味着泥龄的增加,泥龄的增加就使污泥中活细胞的比例减小。其二,过高的微生物浓度使污泥在后续的沉淀池中难以沉淀,影响出水水质。其三,曝气池污泥的增加,就要求曝气池中有更高的氧传递速率,否则,微生物就受到抑制,处理效率降低。采用一定的曝气设备系统,实际上只能够采用相应的污泥浓度,MLSS的提高是有限度的。

四、曝气时间 

在通常情况下,城市污水的最短曝气时间为3h或更长些,这和满足曝气池需氧速率有关。 当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。 若曝气池做得大些,可降低需氧速率,同时由于负荷率的降低,曝气设备可以减小,曝气设备的利用率得到提高。

五、微生物平均停留时间 (又称泥龄)

微生物平均停留时间至少等于水力停留时间,此时,曝气池内的微生物浓度很低,大部分微生物是充分分散的。微生物的停留时间应足够长,促使微生物能很好地絮凝,以便重力分离,但不能过长,过长反而会使絮凝条件变差。微生物平均停留时间还有助于说明活性污泥中微生物的组成。世代时间长于微生物平均停留时间的那些微生物几乎不可能在该活性污泥中繁殖。

六、氧传递速率 

氧传递速率要考虑二个过程:氧传递到水中,氧真正传递到微生物的膜表面要提高氧的传递速率:必须有充足的氧量,必须使混合液中的悬浮固体保持悬浮状态和紊动条件

七、回流污泥浓度

回流污泥浓度是活性污泥沉降特性和回流污泥回流速率的函数。限制MLSS值的主要因素是回流污泥的浓度。 活性污泥体积指数SVI衡量活性污泥的沉降浓缩特性的指标,它是指曝气池混合液沉淀30min后,每单位质量干泥形成的湿泥的体积,常用单位是mL/g

八、污泥回流率

高的污泥回流率增大了进入沉淀池的污泥流量,增加了二沉池的负荷,缩短了沉淀池的沉淀时间,降低了沉淀效率,使未被沉淀的固体随出流带走。 活性污泥回流率的设计应有弹性,并应操作在可能的最低流量。这为沉淀池提供了最大稳定性。

九、曝气池的构造

推流式曝气池:示踪剂的研究表明:推流式曝气池的纵向混合很严重;氧消耗率的数据表明:氧的传递受到限制完全混合式曝气池:处理量小时,只配有一个机械曝气机,很容易围绕曝气机形成混合区;处理量大时,曝气池也相应增大,曝气池不是充分完全混合的

十、pH和碱度

活性污泥pH通常为6.58.5pH之所以能保持在这个范围,是由于污水中的蛋白质代谢后产生碳酸铵碱度和从天然水中带来的碱度所致。生活污水中有足够的碱度使pH保持在较好的水平。工业污水中经常缺少蛋白质,因而产生pH过低的问题。工业废水中的有机酸通常在进入曝气池前进行中和。

十一、溶解氧浓度 

通常溶解氧浓度不是一个关键因素,除非溶解氧浓度跌落到接近于零。只要细菌能获得所需要的溶解氧来进行代谢,其代谢速率就不受溶解氧的影响。一般认为混合液中溶解氧浓度应保持在0.52mg/L,以保证活性污泥系统的正常运行。过分的曝气使氧浓度得到提高,但由于紊动过于剧烈,导致絮状体破裂,使出水浊度升高。特别是对于好氧速度不快而泥龄偏长的系统,强烈混合使破碎的絮状体不能很好地再凝聚。

十二、污泥膨胀及其控制

正常的活性污泥沉降性能良好,其污泥体积指数SVI50150之间;当活性污泥不正常时,污泥不易沉淀,反映在SVI值升高。 混合液在1000mL量筒中沉淀30min后,污泥体积膨胀,上层澄清液减少,这种现象称为活性污泥膨胀。

活性污泥膨胀可分为:

1、污泥中丝状菌大量繁殖导致的丝状菌性膨胀:正常的活性污泥,絮花状物质,

其骨干是菌胶团;不正常的情况下,丝状菌大量出现,主要是有鞘细菌和硫细菌。当污泥中有大量丝状菌时,大量有一定强度的丝状体相互支撑、交错,大大恶化了污泥的沉降、压缩性能,形成了污泥膨胀。

2、并无大量丝状菌存在的非丝状菌性膨胀

发生污泥非丝状菌性膨胀时,处理效率仍很高,上清液也清澈。非丝状菌性膨胀主要发生在污水水温较低而污泥负荷太高时。微生物的负荷高,细菌吸收了大量的营养物,但由于温度低,代谢速度较慢,就积贮起大量高黏性的多糖类物质。这些多糖类物质的积贮,使活性污泥的表面附着水大大增加,使污泥形成污泥膨胀。